skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Doan, Luan C"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Biological processes often take place at surfaces of proteins, where the dynamic and structural properties of aqueous solvents are modified. Information about solvent properties including hydration dynamics and structure, and protein collective motions can be obtained by measuring directly the dielectric response in the megahertz to terahertz frequencies of aqueous protein solutions. Due to the strong absorption of water in this frequency range, the experiment is challenging. Our home built dielectric spectrometer using a vector network analyzer together with frequency extenders allows us to perform the experiment in a wide range of frequency from megahertz to terahertz with a high dynamical range up to 120 dB. A detailed investigation of the dielectric response has revealed the hydration structure including the tightly, loosely bound layers and the number of water molecules in each hydration layer. These water molecules relax with different time constants at different temperatures. As a result, the dynamics of hydrated protein is also probed at different temperatures. Understanding the hydration structure and dynamics of lysozyme in biological conditions can explain the enzymatic activities of biomolecules. 
    more » « less